If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2-100x+60=0
a = 15; b = -100; c = +60;
Δ = b2-4ac
Δ = -1002-4·15·60
Δ = 6400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6400}=80$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-100)-80}{2*15}=\frac{20}{30} =2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-100)+80}{2*15}=\frac{180}{30} =6 $
| 21x-12=90 | | 4x+4=-6+5 | | 6.4^(2x+3)=1 | | 2x-19=13-2x | | 8(3x-6)=11 | | 10x+3=8x+30 | | .15=1.8x | | x^2+8x-28=-3 | | x=9.12x | | 0.8+x=1/5 | | (2a-1)(a+3)=0 | | 3(d+200)=3000 | | 0.25x+7=4(x-20) | | -2/x+1=0 | | 3x6-4=11 | | 2^2n=7.99 | | 5x-21=-6x | | 8^x+5=32^8x | | 26=4-x | | 7.58=6y | | 2d5d=-9 | | 5(4x-3)=-10x+45 | | 12=-16t^2=18t=5 | | -4=b-10/4 | | -3b-5=55 | | 2x=8=5x-10= | | 3t=19.8 | | 14y+2y(6-y)=6 | | 14y+2y(6-y)=14y | | 5x-3(x-2)=8-(6x+18) | | 3+2k-k=6 | | -m-3(4m-11)=-6 |